Магнитоупругий датчик - определение. Что такое Магнитоупругий датчик
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Магнитоупругий датчик - определение

Датчик кислорода; Кислородный датчик
  • thumb
  • thumb
  • thumb
  • thumb
Найдено результатов: 76
Магнитоупругий датчик      

магнитострикционный датчик, Измерительный преобразователь механических усилий (деформаций) или давления в электрический сигнал. Действие М. д. основано на использовании зависимости магнитных характеристик некоторых материалов (например, пермаллоя (См. Пермаллой), Инвара) от механических напряжений в них (см. Магнитострикция). Рабочий элемент М. д. - магнитопровод, на котором размещены одна или несколько обмоток, включаемых в Мост измерительный. Магнитопровод М. д. укрепляют на поверхности детали (или сооружения) в направлении действующих усилий или деформаций. Изменения магнитных характеристик, в частности магнитной проницаемости материала магнитопровода, проявляются в изменении индуктивности или взаимоиндуктивности обмоток. М. д. наиболее целесообразно применять при измерениях малых деформаций (как постоянных, так и быстропеременных) в твёрдых телах, а также измерениях давлений жидкостей и газов, когда требуется высокая чувствительность измерений при относительно малой их точности.

Лит.: Туричин А. М., Электрические измерения неэлектрических величин, 4 изд., М. - Л., 1966.

МАГНИТОУПРУГИЙ ДАТЧИК      
измерительный преобразователь механических усилий или давления в электрический сигнал. Выполнен в виде катушки индуктивности с ферромагнитным сердечником, у которого намагниченность (а следовательно, и индуктивность катушки) меняется при деформации сердечника под действием измеряемой величины.
Эффект Виллари         
Эффект Вилла́ри или магнитоупругий эффект — явление обратное магнитострикции, заключающееся в изменении намагниченности магнетика под действием механических деформаций. Назван по имени открывшего его в 1865 году итальянского физика Э.
акселерометр         
  • Схема простейшего акселерометра. Груз закреплён на пружине. [[Демпфер]] подавляет колебания груза. Чем больше кажущееся ускорение, тем сильнее деформируется пружина, изменяя показания прибора
ПРИБОР, ИЗМЕРЯЮЩИЙ ПРОЕКЦИЮ КАЖУЩЕГОСЯ УСКОРЕНИЯ
G-sensor; Акселерограф; G-сенсор; Датчик положения в пространстве; Датчик ускорения; G-датчик; Датчик наклона
м.
Прибор для измерения ускорений, перегрузок в транспортных машинах, летательных аппаратах и т.п.
Виллари эффект         

влияние механических деформаций (растяжения, кручения, изгиба и т.д.) на намагниченность ферромагнетика. Открыт (1865) итальянским физиком Э. Виллари (Е. Villari, 1836-1904). В. э. обратен магнитострикции (См. Магнитострикция) (изменению размеров ферромагнетика при его намагничивании). Ферромагнетики (например, никель), которые при намагничивании сокращаются в размерах (обладают отрицательной магнитострикцией), при растяжении уменьшают свою намагниченность (отрицательный В. э.). Наоборот, растяжение ферромагнетиков с положительной магнитострикцией (например, стержня из железо-никелевого сплава с 65\% Ni) приводит к увеличению их намагниченности (положительный В. э.). При сжатии знак В. э. меняется на обратный. В. э. объясняется тем, что при действии механических напряжений изменяется доменная структура ферромагнетика (см. Магнитная структура), определяющая его намагниченность. В. э. находит применение в технике при создании материалов с заданными магнитными свойствами.

Лит. см. при ст. Магнитострикция.

Р. З. Левитин.

ВИЛЛАРИ ЭФФЕКТ         
(магнитоупругий эффект) , открытое итальянским физиком Э. Виллари (E. Villari; 1865) явление изменения намагниченности тела при его деформации (эффект, обратный магнитострикции). Виллари эффект обусловлен изменением под действием механических напряжений доменной структуры ферромагнетика, определяющей его намагниченность (см. Домены ферромагнитные).
Датчик движения         
  • Микроволновый датчик движения
  • Прожектор, снабжённый датчиком движения
  • Чувствительные элементы инфракрасных датчиков
  • Инфракрасный датчик движения
Да́тчик движе́ния (, сенсор движения) — сигнализатор, фиксирующий перемещение объектов и используемый для контроля за окружающей обстановкой или автоматического запуска требуемых действий в ответ на перемещение объектов.
АКСЕЛЕРОМЕТР         
  • Схема простейшего акселерометра. Груз закреплён на пружине. [[Демпфер]] подавляет колебания груза. Чем больше кажущееся ускорение, тем сильнее деформируется пружина, изменяя показания прибора
ПРИБОР, ИЗМЕРЯЮЩИЙ ПРОЕКЦИЮ КАЖУЩЕГОСЯ УСКОРЕНИЯ
G-sensor; Акселерограф; G-сенсор; Датчик положения в пространстве; Датчик ускорения; G-датчик; Датчик наклона
(от лат. accelero - ускоряю и ...метр), прибор для измерения ускорений (перегрузок) летательных аппаратов и др.
Датчик         
  • [[Тепловизор]]
  • световых датчиков]]
ПРЕОБРАЗОВАТЕЛЬ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ В СИГНАЛ
Зонд (датчик); Сенсор; Детектор (обнаружитель); Первичный преобразователь; Сенсоры; Датчики

первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину (давление, температуру, частоту, скорость, перемещение, напряжение, электрический ток и т.п.) в сигнал, удобный для измерения, передачи, преобразования, хранения и регистрации, а также для воздействия им на управляемые процессы.

В состав Д. входят воспринимающий (чувствительный) орган и один или несколько промежуточных преобразователей (рис.). Часто Д. состоит только из одного воспринимающего органа (например, Термопара, термометр сопротивления, Тензодатчик и др.). Выходные сигналы различаются по роду энергии - электрические, механические, пневматические (реже гидравлические), и по характеру модуляции потока энергии - амплитудные, время-импульсные, частотные, фазовые, дискретные (кодовые). Наиболее распространены Д., действие которых основано на изменении электрического сопротивления, ёмкости, индуктивности или взаимной индуктивности электрической цепи (Реостатный датчик, Ёмкостный датчик, Индуктивный датчик и др.), а также на возникновении эдс при воздействии контролируемых механических, акустических, тепловых, электрических, магнитных, оптических или радиационных величин (тензодатчик, Перемещения датчик, Пьезоэлектрический датчик, Давления датчик, Фотоэлемент). Д. характеризуются: законом изменения выходной величины (у) в зависимости от входного воздействия (входной величины х), пределами изменений входных (xmin - xmax) и выходных величин (ymin - ymax); чувствительностью S= Δ/Δx , порогом чувствительности (значением минимального воздействия, на которое реагирует Д.) и временными параметрами (постоянными времени). В соответствии с классификацией, принятой в Государственной системе приборов и средств автоматизации (ГСП), Д. относятся к техническим средствам сбора и первичной обработки контрольно-измерительной информации. Д. являются одними из основных элементов в устройствах дистанционных измерений, телеизмерений и телесигнализации, регулирования и управления, а также в различных приборах и устройствах для измерений в физике, биологии и медицине для контроля жизнедеятельности человека, животных или растений (см. Датчики биологические). В связи с автоматизацией производства (См. Автоматизация производства) важнейшее значение приобрели Д. для измерения и регистрации плотности и концентрации растворов, состава и свойств веществ, динамической вязкости и текучести различных сред, влажности, прозрачности, интенсивности окраски, толщины слоя, температуры, упругости, концентрации зарядоносителей и др. параметров, характеризующих технологические процессы. Для этого часто используют Д., основанные на ультразвуковых, радиоволновых, оптических, радиационных и др. методах измерения. Для имитации реальных условий при испытании систем автоматического регулирования и в вычислительной технике для решения задач статистическими методами применяются Случайных чисел датчики.

Специфические требования предъявляются к выходным сигналам и характеристикам Д. при их использовании в системах централизованного контроля (см. Централизованного контроля и управления машина (См. Централизованного контроля и управления система)). Поочерёдное подключение множества Д. к одному измерительному устройству требует максимальной унификации выходных параметров Д. В некоторых случаях термином "Д." пользуются для обозначения всей передающей части телемеханического или автоматического устройства.

Лит.: Агейкин Д. И., Костина Е. Н., Кузнецова Н. Н., Датчики контроля и регулирования, 2 изд., М., 1965; Туричин А. М., Электрические измерения неэлектрических величин, 4 изд. , М. - Л., 1966: Электрические измерительные преобразователи, под ред. Р. Р. Харченко, М. - Л., 1967: Долгов В. А., Кедин А. В., Электронные датчики для автоматических систем контроля, М., 1968.

М. М. Гельман.

Рис. Структурные схемы датчиков (слева - блок-схема, справа - примеры выполнения): а - простейший вид датчика (термопара); б - каскадное соединение преобразователей; в - дифференциальный датчик; г - компенсационный датчик; 1 - воспринимающий орган датчика (чувствительный элемент); 1а - термопара; 1б и 1г - мембраны; 1в - соленоидный индуктивный датчик; 2 - выходной орган датчика; 2б - индуктивный датчик; 3 - измеритель рассогласования (вычитающий элемент); 3г - индуктивный датчик; 4 - усилитель; 5 - генератор компенсирующей величины; 5г - магнитоэлектрическая система; 6 - промежуточный орган датчика; R - электрическое сопротивление; L - индуктивность; е - электродвижущая сила; I - электрический ток; p - давление.

Датчик         
  • [[Тепловизор]]
  • световых датчиков]]
ПРЕОБРАЗОВАТЕЛЬ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ В СИГНАЛ
Зонд (датчик); Сенсор; Детектор (обнаружитель); Первичный преобразователь; Сенсоры; Датчики
Да́тчик — конструктивно обособленное устройство, содержащее один или несколько первичных измерительных преобразователейГОСТ Р 8.673-2009 Государственная система обеспечения единства измерений (ГСИ).

Википедия

Лямбда-зонд

Лямбда-зонд (λ-зонд или датчик кислорода) — датчик уровня кислорода в газовой смеси или жидкости.

Широко используется в автомобилестроении для определения относительного содержания кислорода в выхлопных газах выпускного коллектора двигателей внутреннего сгорания. Полученные сигналы электронной системой управления двигателем (например, инжекторного двигателя) используются для корректировки образования пропорции топливо-воздушной смеси подаваемой в двигатель до значения стехиометрической смеси (для бензина 1:14,7), которая наиболее эффективно сгорает в двигателе. При работе двигателя нужное соотношение топлива формируется за счёт управления временем включения и выключения форсунок, исходя из количества воздуха, которое всасывают цилиндры двигателя, измеренное датчиком массового расхода воздуха.

Лямбда-зонд позволяет скорректировать нужное соотношение воздушно-топливной смеси за счёт определения количества оставшегося несгоревшего топлива либо кислорода в выхлопных газах, что также позволяет снизить количество вредных для человека побочных продуктов процесса сгорания.

Что такое Магнитоупр<font color="red">у</font>гий д<font color="red">а</font>тчик - определение